
Week 4 - Wednesday

 What did we talk about last time?
 Secure encryption algorithms
 DES
 Started AES

 AES keeps an internal state of 128 bits in a 4 × 4 table of bytes
 There are four operations on the state:
 Substitute bytes
 Shift rows
 Mix columns
 Add round key

 Each byte is substituted for some other byte
 This operation is similar to the S-box from DES
 The substitution is based on the multiplicative

inverse of the value in GF(28)
 An algebraic structure is used instead of hand

picking substitution value
 0 is used as its own multiplicative inverse

 To break up patterns, the result of finding the
multiplicative inverse is XORed with the value
99

| 0 1 2 3 4 5 6 7 8 9 a b c d e f
---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
00 |63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 |ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 |b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 |04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 |09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 |53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 |d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 |51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 |cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 |60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 |e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 |e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 |ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 |70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 |e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 |8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

 For 128-bit blocks (those used in AES), the rows are shifted by a set amount
 Row 1 is not shifted at all
 Row 2 is shifted over by 1 byte
 Row 3 is shifted over by 2 bytes
 Row 4 is shifted over by 3 bytes

 Rijndael has slightly different shifts for larger block sizes

 Mixing the columns is the most confusing part
 An invertible linear transformation is applied to each column, diffusing its data

along the column
 This transformation can be viewed as "multiplication" by the following matrix

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

1 means don’t change the value, 2 means left shift by one bit, and 3 means left shift by one
bit and XOR with the original value

 XOR the current round key with the state
 This step is very simple, except that the key schedule that

generates the round key from the overall key is complex

 AES supports key sizes of 128, 192, and 256 bits
 Rijndael supports unlimited key size, in principle, as well as other block sizes

 128-bit keys use 10 rounds, 192 use 12, and 256 use 14

Add round key

First Round

Substitute bytes

Shift rows

Mix columns

Add round key

Normal Round

Substitute bytes

Shift rows

Add round key

Last Round

 Strengths
 Strong key size
 Fast in hardware and software
 Rich algebraic structure
 Well-studied, open standard

 Weaknesses
 Almost none
 A few theoretical attacks exist on reduced-round numbers of AES
 No practical attacks other than side-channel attacks

 No practical attacks
exist on the full AES

 With reduced numbers
of rounds and strong
attack models, there
are some theoretical
attacks
 CP = chosen plaintexts
 RK-CP = related key

chosen plaintexts

Rounds Key Size Data Time Year

6 All 232 CP 272 1998

6 All 6 ∙ 232 CP 244 2000

7 192 19 ∙ 232 CP 2155 2000

7 256 21 ∙ 232 CP 2172 2000

7 All 2128 – 2119 CP 2120 2000

8 192 2128 – 2119 CP 2188 2000

8 256 2128 – 2119 CP 2204 2000

9 256 285 RK-CP 2224 2000

12 192 2123 RK-CP 2176 2009

14 256 299.5 RK-CP 299.5 2009

10 128 288 CP 2126.1 2011

 Attacks that rely on timing, measuring cache, energy consumption, or other
ways an implementation leaks data are called side-channel attacks

 Several practical side channel attacks for AES do exist
 In 2005, Bernstein found a cache-timing attack that broke an OpenSSL implementation

of AES using 200 million chosen plaintexts and a server that would give him precise
timing data

 Later in 2005, Osvik et al. found an attack that recovered a key after 800 encryptions in
only 65 milliseconds, with software running on the target machine

 In 2009, Saha et al. found an attack on hardware using differential fault analysis to
recover a key with a complexity of 232

 In 2010, Bangerter et al. found a cache-timing attack that required no knowledge of
plaintexts or ciphertexts and could work in about 3 minutes after monitoring 100
encryptions

 In 2016, Ashokkumar et al. found an attack that needs only 6-7 blocks of plaintext and
ciphertext and runs in under a minute

DES AES

Date 1976 1999

Block size 64 bits 128 bits

Key length 56 bits 128, 192, 256 bits

Encryption primitives Substitution, permutation Substitution, shift, bit mixing

Cryptographic
primitives

Confusion, diffusion Confusion, diffusion

Design Open Open

Design rationale Closed Open

Selection process Secret Secret with public comment

Source IBM with NSA help Independent Belgians

Security Broken if you've got the resources No practical attacks yet

 So far, we have talked about symmetric (or private) key
cryptography

 In symmetric key cryptography, the same key is used for
encryption and decryption

 The key is a shared secret
 This is perfect for sending messages between two parties who

1. Trust each other
2. Have shared a secret ahead of time

 Sometimes, we need something different
 We want a public key that anyone can use to encrypt a

message to Alice
 Alice has a private key that can decrypt such a message
 The public key can only encrypt messages; it cannot be used

to decrypt messages

 In 1976, Diffie and Hellman proposed the idea of a public key
cryptosystem, one in which encryption and decryption keys
were different

 They gave the following three conditions for such a system:
1. It must be computationally easy to encipher or decipher a message

given the appropriate key
2. It must be computationally infeasible to derive the private key from

the public key
3. It must be computationally infeasible to determine the private key

from a chosen plaintext attack

 (Whitfield) Diffie and (Martin) Hellman "invented" public key
cryptography in 1976

 However, James Ellis invented it in 1970, but his work was for a
secret British government agency, classified until 1997

 Diffie and Hellman came up with the idea of a "trapdoor" function
(computationally easy one way, hard the other)

 RSA, a practical algorithm published in 1978, made this idea
workable

 Again, the system had been invented earlier by British intelligence
 The guys behind RSA made millions

 RSA depends in large part on the difficulty of factoring large
composite numbers (particularly those that are a product of
only 2 primes)

 Recall that an integer p is prime if
 p > 1
 p is not divisible by any positive integers other than 1 and itself

 Any integer greater than 1 can be factored into a unique series
of prime factors:
 Example: 52 = 22 ∙ 13

 Two integers a and b (greater than 1) are relatively prime or
coprime if and only if a shares no prime factors with b

 How do we know if a number is prime?
 For small numbers, we can try to divide it by all integers less than

or equal to its square root
 RSA-768 was successfully factored in December 2009 into 2

primes
 One is:

33478071698956898786044169848212690817704794983713768568912431
388982883793 878002287614711652531743087737814467999489

 You can't test up to the square root of that in any reasonable time

 In 2002, the AKS algorithm was published which
demonstrated that it was possible to test to see if a number is
prime
 Deterministically
 In time polynomial in the number of digits of the prime

 This algorithm is of theoretical interest, but it's too slow for
testing the primality of RSA moduli

 We won't get into the number theory behind this (yet)
 A Rabin-Miller primality test works as follows:
 Let n be the number you want to prove if it's prime or not
 n must be odd, thus n – 1 is even
 (n – 1) = 2sd where s and d are positive integers and d is odd
 If n is prime, then for any integer 1 < a < n, exactly one of the two is true:
▪ ad ≡ 1 (mod n) or
▪ a2rd ≡ -1 (mod n), 1 ≤ r < s

 Pick several a values, see if either of the two cases hold
 If it ever doesn't, you know you have a composite

 What if we want to see if 221 is prime?
 n – 1 = 220 = 22∙55
 s = 2
 d = 55
 Attempt 1: Let a = 174
 a20·d mod n = 17455 mod 221 = 47 ≠ 1, n − 1
 a21·d mod n = 174110 mod 221 = 220 = n − 1 Check!

 Attempt 2: Let a = 137
 a20·d mod n = 13755 mod 221 = 188 ≠ 1, n − 1
 a21·d mod n = 137110 mod 221 = 205 ≠ n − 1 Oh no!

 Every successful attempt means there is only a 25% chance that the
number is composite

 So, after k attempts, there is a 4-k chance that the number is composite

 RSA
 Public key management
 Spencer Wilson presents

 Office hours from 1:45-4 p.m. today are moved to 3-5 p.m.
 Keep reading Sections 2.3 and 12.4
 Work on Project 1
 Due this Friday

	COMP 4290
	Last time
	Questions?
	Project 1
	Kyle Hinkle Presents
	Back to AES
	AES internals
	Substitute bytes
	Shift rows
	Mix columns
	Add key
	AES rounds
	AES pros and cons
	AES attacks
	Side channel attacks
	AES vs. DES
	Public Key Cryptography
	Symmetric key cryptography
	Public key cryptography
	Diffie and Hellman
	Public key history
	Number Theory
	Prime
	Fundamental theorem of arithmetic
	Testing for primality
	Efficient primality testing
	Rabin-Miller primality testing
	Rabin-Miller example
	Ticket out the Door
	Upcoming
	Next time…
	Reminders

